Осушение воздуха в производстве

Контроль уровней влажности в производстве и при упаковке может иметь основное значение для итогов производства продукции. Идет ли речь о конфетной глазури, обработки мясных изделий, хранении батарей и либо изготовлении стекла – поддержание оптимального уровня влажности сокращает производственные расходы путем достижения большей эффективности и снижении числа дефектов продуктов.

Осушение воздуха решает четыре основные проблемы, типично возникающие в производстве:

Попадание влаги или закупоривание и слипание: Осушение воздуха предотвращает процесс попадания влаги при обработке порошков и пудр, а также при работе с такими продуктами в таких зонах как бункеры хранения сахарного песка, упаковочные цеха, помещения хранения удобрения на основе нитрата аммония и обертывания конфет.

Конденсация или потоотделение: Конденсация, которая может приводить к образованию плесени, росту грибка и загрязнения от попадания капель влаги сверху, имеет место, когда такие холодные поверхности, как трубы, бункеры и потолки в производственных цехах окружены влажным воздухом. Системы осушения воздуха предотвращают конденсацию путем поддержания постоянной температуры конденсации в воздухе, окружающем холодные поверхности, установленной немного ниже температуры наиболее холодной из таких поверхностей.

Коррозия: удаление влаги из воздуха предотвращает развитие ржавления на металлических поверхностях и гниение органического материала.

Сушка продуктов, восприимчивых к высоким температурам: многие типы продуктов должны высушиваться до низких уровней содержания влаги, но не переносят избыточного тепла, включая фармацевтическую диагностику, термоотверждающиеся смолы, промышленные ферменты и большинство белков. Использование воздухоосушителей для ускорения времени сушки без повреждения продукта является наиболее желательным, когда граничный температурный уровень составляет приблизительно 120 F, а температурное ограничение для продукта — 95 F или ниже.

Методы осушения воздуха
Воздухоосушение конденсацией

Воздухоосушение путем охлаждения может быть особенно эффективным, когда воздух теплый, а уровень влажности высокий. При этих условиях система охлаждения может удалять от двух до четырех раз энергии (температура и влага) из потока воздуха от той электрической энергии, которую потребляет машина для выполнения этой задачи. Высушиваемый воздух проходит через змеевик охлаждения. По мере охлаждения воздуха, он теряет способность удерживать водяной пар. Вода конденсируется на поверхности змеевика охлаждения и стекает в сточный лоток в виде жидкости. Воздух становится суше в абсолютных величинах, но теперь он насыщен, это означает, что его относительная влажность составляет около 100%. Если требуется низкая относительная влажность дополнительно к более низкому абсолютному объему влаги, воздух может быть прогрет после прохождения змеевика охлаждения.

Таковы эксплуатационные принципы, используемые в воздухоосушителях потребительского класса, которые могут использоваться для осушения сырого подвального помещения. Воздух проходит через змеевик охлаждения, который остужает и высушивает воздух. Затем насыщенный воздух проходит через второй змеевик, в котором в воздушный поток подается тепло компрессора и хладагента, что снижает относительную влажность до того, как воздух подается в помещения.

Обычные системы кондиционирования воздуха также осуществляют осушение подобным образом, но такое оборудование обычно сконфигурировано для оптимального удаления тепла, а осушение является побочным продуктом основной функции охлаждения воздух. Для промышленных целей осушение на основе охлаждения осуществляется специальными установками по обработке воздуха, оптимизированными для удаления влаги, а не тепла. Эти установки очень основательно охлаждают небольшие объемы воздуха в отличие от незначительного охлаждения больших объемов воздуха. Более глубокое охлаждение конденсирует больше влаги из воздуха.

Осушение на основе адсорбента

Когда требуется низкая температура конденсации, или очень низкие уровни относительной влажности, осушение на основе адсорбента является, как правило, наиболее экономически выгодной альтернативой. Это оборудование задействует разницы в давлении водяных паров для удаления влаги из воздуха химическим путем. Поверхность сухого адсорбент имеет очень низкое давление водяных паров в сравнении с намного большим давлением водяных паров влажного воздуха. Водяной пар отходит от влажного воздуха на поверхность адсорбента для устранения разницы давления водяного пара. Далее, поверхность адсорбента собирает достаточно водяного пара для уравнивания давления водяного пара влажного воздух. И, наконец, адсорбент должен высушиваться (реактивироваться) путем подачи на него тепла до момента его регенерации и готовности продолжать удаление влаги из воздуха.

Существует много способов подачи адсорбента в воздушный поток. В наиболее передовых промышленных воздухоосушителях, использующих атмосферное давление, адсорбент находится в легкой форме в виде колеса, которое вращается между двумя отдельными потоками воздуха.

Адсорбент находится в стенках тонких воздушных каналов, которые проходят по глубине колеса. Диаметр этих каналов не одинаков, но обычно — около двух миллиметров. Диаметр колеса зависит от того, как много воздуха должны пройти сквозь него. Большие потоки воздуха требуют большего диаметра колеса. Воздух проходит через сорбционное колесо, отдавая водяной пар адсорбенту, находящемуся в стенках воздушных путей. Сухой воздух выходит из колеса и переносится в точку пользования  вентиляторами или нагнетателями.

В ходе этого процесса часть колеса вращается, заходя во второй, меньший поток воздуха – подогретый воздух реактивации адсорбента. Горячий воздух реактивации подогревает колесо, выводя водяной пар из адсорбента. Поскольку каждое отделение колеса проходит, вращаясь, через воздух реактивации, его адсорбент высушивается и вновь удаляет влагу из технологического воздуха.

Когда воздух осушен, температура технологического воздуха поднимается пропорционально объему удаленной воды. Более сухой воздух означает более теплый воздух. Это представляет собой процесс, обратный более знакомому процессу испарительного охлаждения. Когда вода испаряется в воздух, тепло, необходимое для испарения, поступает из этого воздуха, таким образом, его ощущаемая температура падает. И, наоборот, когда воздух осушается, тепло, необходимое для испарения воды, первоначально высвобождается, поднимая температуру воздушного потока.

В виду того, что  сорбционный воздухоосушитель удаляет воду из воздуха в виде пара, а не конденсированной жидкости, нет риска возникновения замороженного конденсата. Таким образом, этот тип оборудования чаще всего используется там, где требуется температура конденсации ниже 50 F.

Крайним примером является технология с использованием литиевой фольги. Металл лития используется для батарей. В своей чистой форме, поверхность этого металла обладает достаточной энергией для разделения молекул воды при образовании газообразного водорода и кислорода с высвобождением тепла. При достаточном водяном паре, его тепло может воспламенять водород. Далее, применение технологий с литиевой фольгой имеет место в помещениях, где поддерживается температура конденсации между -30 и -40 F. Технология с применением металлов плутоний и кальция требует подобной среды. Системы осушения сорбционного типа  поддерживают в помещениях тот же уровень сухости даже при влагосодержании от 30 до 60 человек, работающих в помещении.

Осушение сорбционного типа в сравнении с осушением, основанным на охлаждении

Инженеры, недавно занявшиеся проблемами технологии осушения, часто задают вопрос о том, какой их этих двух методов представляет собой наилучший выбор. В большинстве случаев использования для целей производства/обработки простым ответом является тот, что обе эти технологии используются с тем, «сотрудничать, а не конкурировать». Осушение на основе охлаждения решает вопросы с  влагосодержанием при высоких температурах конденсации, а сорбционное  осушение удаляет влагосодержание при более низких температурах конденсации. Конкретный выбор комбинации этих двух технологий будет зависеть от характеристик конкретного применения.

Эти факторы означают следующее:

Оценка уровня температуры конденсации

Когда требуемый уровень контроля влаги сравнительно высок (выше температуры конденсации 50 F), осушение на основе охлаждения является очень выгодным с экономической точки зрения, как по эксплуатационным расходам, так и по  начальной стоимости оборудования. Недорогое стандартное оборудование с большим производственным объемом предлагается на рынке для данного уровня контроля и более высокого. Ниже этого уровня контроля, метод осушения охлаждением становится менее экономически выгодным в первую очередь из-за мер предосторожности в связи с необходимостью предотвращения замораживания конденсированной воды на змеевике охлаждения.

Хотя вода не замерзает при температуре выше 32 F, система осушения может подавать воздух ниже этой температуры конденсации для поддержания 50 F температуры конденсации в помещении. (Это похоже на обогрев дома, где воздух должен подаваться при температуре 120 F для поддержания в доме температуры  70 F.) Таким образом, воздухоосушитель на основе охлаждения, подающий воздух при низких температурах конденсации, может заморозиться, если не предприняты специальные меры предосторожности в конструкции установки. Такие характеристики означают более высокую стоимость, специальную конструкцию оборудования и оборудование, имеющее боле высокие эксплуатационные расходы  на 1 кг удаляемой воды, и, следовательно, использование адсорбентов становится более экономически обоснованным, чем системы осушения на основе охлаждения при низких температурах конденсации.

Измерение чувствительности к относительной влажности

Когда процесс требует низкого уровня влага в абсолютных выражениях, но может переносить высокую относительную влажность, осушение на основе охлаждения может быть экономически более выгодным без необходимости применения адсорбентов. Можно привести пример хранения фруктов и овощей. Идеальная температура —  40 F, так что, конечно, температура конденсации должна быть ниже этого уровня. Но, если относительная влажность ниже  90%, фрукты могут высохнуть в процессе хранения и потерять ценность. Поскольку этот продукт требует и низкой температуры, и высокой влажности, системы осушения на основе охлаждения идеально подходят для подобных типов применения. И, напротив, другие процессы могут требовать низкой относительной влажности и  низкой температуры конденсации.

Узкий или широкий температурный допуск

Если конкретный тип применения имеет узкий температурный допуск, в таком случае охлаждение и подогрев будут важны в сочетании с осушением. Если конкретный тип применения имеет широкий температурный допуск, как это имеет место при хранении в не отапливаемых помещениях, в таком случае может быть достаточно лишь оборудования осушения.

Создание идеальной системы осушения

Промышленные системы осушения сконструированы под заказ для каждого конкретного проекта. Следовательно, производители разработали почти что бесконечное разнообразие возможных компонентов для обслуживания почти что бесконечных типов применения. Эти компоненты облегчают оптимизацию проектирования системы, однако такое широкое разнообразие ставит перед инженером-проектировщиком необходимость принятия огромного количества решений на ранних стадиях проекта, как правило, до того, как стоимостные  преимущественные последствия этих решений совершенно понятны.

Определение цели проекта

Проектировщик должен четко понимать и документировать цель проекта. Такое понимание позволяет принятие других проектных решений в порядке их настоящей важности. Например, если целью проекта является предотвращение роста плесени на крахмале в бункере хранения, в таком случае нет необходимости в поддержании строго допуска в 1% относительной влажности (RH). Единственной реальной проблемой тут является то, чтобы влажность не превышала 60%, и чтобы  конденсация не имела места. Система может быть простой и недорогой.

В противоположном случае, если целью проекта является предотвращение коррозии лития, нет смысла в экономии средств путем использования средств контроля, которые обеспечивают допуск 5% относительной влажности. Выше 2% относительной влажности, литий подвержен коррозии, выделяя водород, который затем взрывается. Датчик с большим допуском, чем критичный уровень контроля, сам по себе не может запустить систему во время, достаточное для предотвращения такого взрыва. Понимание цели проекты в этом плане помогает проектировщику системы избежать, как ненужных расходов, так и псевдо экономии.

Установление уровней контроля и допусков

После того, как цель проекта четко определена, проектировщик должен решить, каковы должны быть уровни контроля влажности и температуры, и допуски для достижения этой цели. Такие решения могут требовать проведения исследований, но во многих случаях взаимоотношения между процессом и влагой достаточно ясны, что позволяет продолжить проектирование. Например, если процесс приостанавливается в летнее время, но не весной, осенью или зимой, можно предположить, что допуск влажности находится в достаточно широком диапазоне, и что система осушения должна быть нацелена только на устранение крайних летних уровней влажности. В других случаях, поставщик проблемного материала может рекомендовать оптимальные условия окружающей среды для обработки продукта.

Заданная точка контроля должна устанавливаться так, чтобы разрешать вычисление пикового тепла и влагосодержания, и без таких данных нет возможности расчетным путем определить размер и стоимость оборудования. Нагрузки относятся к поддерживаемым уровням температуры и влаги. При равности всех прочих переменных, система поддержания 72 F, 35% относительной влажности будет намного меньше, чем та, которая должна поддерживать 72 F, 25% относительной влажности. Чем ниже уровень влажности, тем более дорогой будет система. Повышенные уровни влагосодержания также увеличивают стоимость системы. Следовательно, вычисление этих нагрузок является следующим важнейшим шагом при проектировании системы.

Вычисление  влагосодержания (нагрузки влаги)

В большинстве случаев, инженер по применению, занятый поставщиком осушения, помогает инженеру-проектировщику в расчете влагосодержания. В порядке от самых больших до самых малых, типичные нагрузки поступают  из воздуха вентиляции, инфильтрационного воздуха, различных отверстий, людей, продуктов/упаковки  и проникновения пара. Низкие нагрузки означают менее дорогое оборудование. Следовательно, наиболее экономически выгодной коррекцией эксплуатации здания является сокращение до минимум объема сбрасываемого отработанного воздуха, сокращение расходов на осушение воздуха, поступающего в помещения для замены отработанного воздуха. После этого заделка трещин в здании значительно сокращает расходы на осушение и позволяет очень умеренные затраты на уплотняющий материал для заделки трещин.

Свежий/вентиляционный воздух важен в большинстве контролируемых пространствах. В большинстве случаев строительные стандарты требуют определенного объема воздуха на одного человека или на один квадратный фут занимаемого пространства. Зачастую меньше внимания уделяется обеспечению того, чтобы весь отработанный воздух компенсировался вентиляционной системой. Это является особой проблемой в больших пространствах, где наличие объемов отработанного воздуха может быть не так очевидно. К тому же, инженеры, проектирующие в основном здания коммерческого назначения, могут быть не вполне осведомлены с влиянием недостаточного компенсационного воздуха на пространства с контролируемой влажностью.

Следующим источником нагрузок являются различные отверстия. Каждый раз, когда открывается  дверь, влажный воздух втягивается в помещение. Когда это возможно, следует потратить некоторое время на наблюдение того, как часто открывается дверь в самый загруженный производственный период.

Воздушный шлюз в большой степени сокращает инфильтрацию влажного воздуха (до тех пор, пока обитатели дома не оставляют одну из дверей открытой настежь). По мере того как уровень контроля влажности снижается, воздушный шлюз у дверей дает заметные экономические преимущества. Допущения, стоящие за предложением использования воздушного шлюза, сводятся к тому, что достигается компромиссное равновесие между внутренними и внешними условиями, и весь воздух попадает в помещение, когда открывается воздушный шлюз.

Часто продукт должен входить или выходить из помещения с контролируемой влажностью на конвейере. Такой тип отверстия для конвейера не должно упускаться из виду при рассмотрении источников инфильтрации. Для сокращения инфильтрации влажного воздуха через широкие отверстия, как например, желоба, инженеры часто подают избыточное давление на компенсационный воздух с тем, чтобы сухой воздух вышел из трещин, а не влажный воздух проник внутрь.

Когда люди выдыхают или потеют, выделяется влага, создавая еще один источник нагрузки. Степень зависит от уровня напряженных усилий – большая степень метаболизма равняется большей влаге. При вычислении влагосодержания в комнате, убедитесь в том, что учтены приходящие и уходящие посетители. Опытные инженеры часто умножают на два расчеты по «своим» людям для допуска изменений в помещении и посетителей.

Влагосодержание от продуктов и упаковки значительно варьируется в зависимости от применения. При крупномасштабном хранении, влага, выделяемая из продукта, может представлять единственный наибольший компонент влагосодержания. Нагрузка представляет собой разницу между начальной массой продукта и его весом при уравновешенности с пониженной влажностью.

Проникновение пара через части здания обычно представляют собой наименьшую часть нагрузки, и отвечают за менее чем 2% общего влагосодержания (если все стены, пол и потолки имеют прочные поверхности без утечек воздуха). Нагрузка от проникновения заслуживает большего внимания, если здание очень велико, и влага проникает с больших площадей поверхности, или если условия контроля очень низки. Ниже 5% относительной влажности, каждая протечка, даже самая малая, становится крайне важной.

Пиковые проектные погодные условия являются очень важным элементом расчета нагрузок. Владелец должен решить, насколько консервативно должен рассчитываться размер системы. При использовании крайних погодных данных система будет контролировать влажность на протяжении всех 8 760 часов в течение обычного года. Такая система будет также очень дорогостоящей. Если можно отбросить некоторые часы, система может стоить на 20 — 30% меньше, но при пике всех данных влагосодержания одновременно при экстремальных погодных условиях, влажность может подняться выше контрольной точки.

Инженеры по кондиционированию воздуха представляют количественные показатели по таким вариантам выбора в Пособии основных данных ASHRAE в соответствии с процентом часов в год, когда погодные условия будут выше определенных величин. Например, значения 0.4% скорее всего будут превышены только для 35 часов в год (8,760 x 0.004). Менее консервативный проектным вариантом являются значения  1% или 2.5%, которые будут превышены для 70 и 219 часов, соответственно.

Решение относительно того, какие данные использовать, принимается конечным пользователем, который лучше других способен оценить экономические последствия незначительного превышения характеристик для коротких периодов времени. Обработка лития, например, обычно требует более консервативного проекта, чем бункеры хранения крахмала, потому что последствия высокой влажности лития сводятся к большим опасностям, а не просто расходам.

Оценка технологии осушения

Проектный инженер, исследующий использование  систем осушения, скорее всего будет работать в тесном сотрудничестве с поставщиками  оборудования для определения затрат и преимуществ осушения в сравнении с альтернативными способами решения проблем. Поставщики систем осушения могут оказать наибольшую помощь и реагировать достаточно быстро, если ключевые аспекты потенциального проекта четко определены. Эти аспекты включают: точную передачу характера проблемы и ее последствий; определение цели проекты в простых предложениях, описывающих измеримые результаты; а также наличие средств для исследовательской работы и физических характеристик площадки.

Применение

Системы осушения широко используются в производстве и обрабатывающей промышленности, но остаются неиспользованные возможности для расширения использования этой технологии. Инженер-проектировщик должен хорошенько продумать применение этой технологии, в тех случаях, когда изменения погодных условия негативно влияют на производительность или качество продукции, если коррозия или конденсация создают проблемы, или каждый раз, когда продукт должен высушиваться при низких температурах.